Chemistry 115
Name \qquad Key
Dr. Cary Willard
Exam 4B
May 20, 2009

	Points Earned	Points Possible
Part 1 multiple choice		30
Page 2		30
Page 3		23
Page 4		17
Total		100

All work must be shown to receive credit. Show all answers to the proper number of significant figures.
$\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} / \mathrm{mol}$
$\mathrm{K}={ }^{\circ} \mathrm{C}+273.16$
$0^{\circ} \mathrm{C}=273.16 \mathrm{~K}$

Grossmont College Periodic Table																	
IA																VIIA	NOBLE GASES
$\begin{aligned} & \text { 1 } \\ & \mathbf{H} \\ & 1.008 \end{aligned}$	IIA											IIIA	IVA	VA	VIA	$\begin{aligned} & 1 \\ & \mathbf{H} \\ & 1.008 \end{aligned}$	2 He 4.002
$\begin{aligned} & 3 \\ & \mathbf{L i} \\ & 6.941 \end{aligned}$	$\begin{aligned} & 4 \\ & \mathrm{Be} \\ & 9.012 \end{aligned}$											$\begin{array}{\|l\|} \hline 5 \\ \text { B } \\ 10.81 \\ \hline \end{array}$	$\begin{aligned} & 6 \\ & \mathbf{C} \\ & 12.01 \end{aligned}$	$\begin{aligned} & 7 \\ & \mathbf{N} \\ & 14.01 \end{aligned}$	$\begin{array}{\|l\|} \hline 8 \\ \mathbf{O} \\ 16.00 \\ \hline \end{array}$	$\begin{aligned} & 9 \\ & F \\ & 19.00 \end{aligned}$	$\begin{aligned} & 10 \\ & \mathrm{Ne} \\ & 20.18 \end{aligned}$
11 Na 23.00	12 $\mathbf{M g}$ 24.30	IIIB	IVB	VB	VIB	VIIB	VIII	VIII	VIII	IB	IIB	13 AI 27.00	14 Si 28.09	$\begin{aligned} & 15 \\ & \mathbf{P} \\ & 30.97 \end{aligned}$	16 S 32.06	$\begin{aligned} & 17 \\ & \mathrm{CI} \\ & 35.45 \\ & \hline \end{aligned}$	18 Ar 39.95
$\begin{aligned} & \hline 19 \\ & \mathbf{K} \\ & 39.10 \end{aligned}$	$\begin{aligned} & 20 \\ & \mathrm{Ca} \\ & 40.08 \end{aligned}$	21 Sc 44.96	$\begin{aligned} & \hline 22 \\ & \mathrm{Ti} \\ & 47.90 \end{aligned}$	$\begin{aligned} & 23 \\ & \mathbf{V} \\ & 50.94 \end{aligned}$	$\begin{aligned} & \hline 24 \\ & \mathrm{Cr} \\ & 52.00 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 25 \\ & \mathbf{M n} \\ & 54.94 \\ & \hline \end{aligned}$	26 Fe 55.85	27 Co 58.93	$\begin{aligned} & 28 \\ & \mathbf{N i} \\ & 58.70 \end{aligned}$	$\begin{aligned} & 29 \\ & \mathrm{Cu} \\ & 63.55 \end{aligned}$	$\begin{array}{\|l\|} \hline 30 \\ \mathbf{Z n} \\ 65.38 \end{array}$	31 Ga 69.72	$\begin{aligned} & 32 \\ & \text { Ge } \\ & 72.59 \end{aligned}$	33 As 74.92	34 Se 78.96	35 Br 79.90	$\begin{aligned} & \hline 36 \\ & \mathbf{K r} \\ & 83.80 \\ & \hline \end{aligned}$
37 Rb 85.47	38 Sr 87.62 56	$\begin{aligned} & \hline 39 \\ & \mathbf{Y} \\ & 88.91 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & \mathbf{Z r} \\ & 91.22 \end{aligned}$	$\begin{aligned} & \hline 41 \\ & \mathrm{Nb} \\ & 92.91 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 42 \\ \text { Mo } \\ 95.94 \\ \hline \end{array}$	$\begin{aligned} & \hline 43 \\ & \mathrm{Tc} \\ & \text { (99) } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 44 \\ \text { Ru } \\ 101.1 \\ \hline \end{array}$	$\begin{aligned} & \hline 45 \\ & \text { Rh } \\ & 102.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 46 \\ & \text { Pd } \\ & 106.4 \\ & \hline \end{aligned}$	47 $\mathbf{A g}$ 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	$\begin{aligned} & 53 \\ & \text { I } \\ & 126.9 \end{aligned}$	54 Xe 131.3
$\begin{aligned} & \hline 55 \\ & \text { Cs } \\ & 132.9 \end{aligned}$	56 Ba 137.3	$\begin{aligned} & \hline 57 \\ & \mathrm{La} \\ & 138.9 \end{aligned}$	72 Hf 178.5	73 Ta 180.9	$\begin{aligned} & \hline 74 \\ & \mathrm{~W} \\ & 183.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 75 \\ & \operatorname{Re} \\ & 186.2 \end{aligned}$	$\begin{aligned} & \hline 76 \\ & \text { Os } \\ & 190.2 \end{aligned}$	$\begin{aligned} & \hline 77 \\ & \mathbf{I r} \\ & 192.2 \end{aligned}$	$\begin{aligned} & \hline 78 \\ & \mathbf{P t} \\ & 195.1 \end{aligned}$	$\begin{aligned} & \hline 79 \\ & \mathbf{A u} \\ & 197.0 \end{aligned}$	80 Hg 200.6	$\begin{aligned} & \hline 81 \\ & \mathrm{TI} \\ & 204.4 \\ & \hline \end{aligned}$	82 Pb 207.2	83 Bi 209.0	124 Po (209)	85 At (210)	$\begin{aligned} & \hline 86 \\ & \mathbf{R n} \\ & (222) \\ & \hline \end{aligned}$
87 Fr (223)	88 Ra 226.0	89 Ac 227.0	$\begin{aligned} & \hline 104 \\ & \mathbf{R f} \\ & (261) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 105 \\ & \text { Db } \\ & (262) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 106 \\ & \mathrm{Sg} \\ & (263) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 107 \\ & \text { Bh } \\ & (262) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 108 \\ & \mathrm{Hs} \\ & (265) \\ & \hline \end{aligned}$	$\begin{aligned} & 109 \\ & \mathbf{M t} \\ & (266) \\ & \hline \end{aligned}$	110 $? ?$ (269)								

Lanthanide series

Actinide series

58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm (147)	$\begin{aligned} & 62 \\ & \mathrm{Sm} \\ & 150.4 \end{aligned}$	63 Eu 152.0	64 Gd 157.3	$\begin{aligned} & 65 \\ & \mathrm{~Tb} \\ & 158.9 \end{aligned}$	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	$\begin{aligned} & 69 \\ & \mathrm{Tm} \\ & 168.9 \end{aligned}$	70 Yb 173.0	71 Lu 175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Part 1 - Multiple Choice (30 points)

1. At which pressure would nitrogen gas be most soluble?
a. $\quad 1.0 \mathrm{~atm}$
d. $\quad 2.0 \mathrm{~atm}$
b. $\quad 2.5 \mathrm{~atm}$
e. Unable to determine
c. $\quad 1.5 \mathrm{~atm}$
2. Which is the hydroxide ion?
a. H^{+1}
b. $\mathrm{H}_{3} \mathrm{O}^{+1}$
d. $\quad \mathrm{OH}_{2}{ }^{-1}$
e. $\mathrm{H}_{2} \mathrm{OOH}$
3. What is the conjugate base of HS^{-1} ?
a. H^{+1}
b. OH^{-1}
$\begin{array}{ll}\text { d. } \quad & \mathrm{H}_{2} \mathrm{~S} \\ \text { e. } \quad & \mathrm{S}^{-2}\end{array}$
c. HS^{+1}
4. All nuclides of which element must be radioactive?
a. Strontium
d. Sulfur
b. Plutonium
e. Carbon
c. Arsenic
5. An alpha particle consists of
a. One proton and one neutron
d. Two protons and two neutrons
b. One proton and two neutrons
e. Two protons and fourneutrons
c. Two protons and one neutron
6. In which type of reaction do the nuclei of two light elements unite to form a heavier nucleus?
a. Fusion
d. Beta decay
b. Fission
e. Electron capture
c. Alpha decay
7. How many neutrons are in the nucleus of cobalt-60?
a. 29
b. 31
c. 27
d. 33
e. 60
8. Which hydrocarbon series contains a triple covalent bond between carbon atoms?
a. Alkatrienes
d. Alkanes
b. Alkines
e. Alkenes
c. Alkynes
9. Two or more different compounds with the same molecular formula are
a. Isotopes
d. Hypertopes
b. Hypermeres
e. Mollimers
10. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$ is
a. Pentane
b. 2-pentene
c. Pentyne
d. 3-pentene
11. Which is a carboxylic acid?
a.

b.

e. Pen-2-ene
c. $\stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{C}-\mathrm{O}-\mathrm{H}$
d.

12. Which is an alcohol?

b.

c.

d.

.
13. The simplest carbohydrates are
a. Peptides
d. Disaccharides
b. Dipeptides
e. Potatoes
c. Monosaccharides

14. What are the primary constituents of proteins?
a. Proteases
b. Rabbits
d. Monosaccharides
c. Nucleic acids
15. Fats and oils are
a. Carbohydrates
d. Proteins
b. Lipids
e. Hydrocarbons
c. Nucleic acids

Part 2 - Problems and Questions (70 points)

1. (4 points) Give the proper IUPAC names for the following acids
a. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Sulfuric acid

b. HCl

Hydrochloric acid

2. (8 points) Determine the type of emissions (alpha, beta, or gamma) that occurred in each of the following transitions.

$$
\begin{aligned}
& { }_{90}^{234} \mathrm{Th} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{88}^{230} R a \\
& { }_{88}^{230} R a \rightarrow{ }_{88}^{230} R a+{ }_{0}^{0} \gamma
\end{aligned}
$$

3. (6 points) Strontium-90 has a half-life of 28 years. If a 4.00 mg sample was stored for 168 years, what mass of $\mathrm{Sr}-90$ would remain?

$$
4.00 \mathrm{mg} \stackrel{1}{\rightarrow} 2.00 \mathrm{mg} \stackrel{2}{\rightarrow} 1.00 \mathrm{mg} \xrightarrow{\stackrel{3}{\rightarrow}} 0.50 \mathrm{mg} \xrightarrow{\stackrel{4}{\rightarrow}} 0.25 \mathrm{mg} \stackrel{5}{\rightarrow} 0.125 \mathrm{mg} \stackrel{6}{\rightarrow} 0.063 \mathrm{mg}
$$

4. (6 points) A solution is prepared by dissolving 31.6 grams of KOH in 386.0 grams of water Calculate the mass percent potassium hydroxide in a solution.

$$
\begin{aligned}
? \% K O H= & \left(\frac{\text { mass } K O H}{\text { mass solution }}\right) \times 100 \%=\left(\frac{31.6 \mathrm{~g} \mathrm{KOH}}{(386.0+31.6) g \text { soln}}\right) \times 100 \% \\
& =\left(\frac{31.6 \mathrm{~g} \mathrm{KOH}}{417.6 \mathrm{~g} \mathrm{soln}}\right) \times 100 \%=7.56 \% \mathrm{KOH}
\end{aligned}
$$

5. (6 points) Calculate the number of grams of calcium chloride in 53.6 mL of a 0.4288 M solution CaCl_{2}.

$$
\begin{aligned}
? \mathrm{gCaCl}_{2}= & 53.6 \mathrm{~mL} \mathrm{soln} \times \frac{0.4288 \mathrm{~mol} \mathrm{CaCl}_{2}}{1000 \mathrm{~mL} \mathrm{soln}} \times \frac{110.98 \mathrm{~g} \mathrm{CaCl}_{2}}{1 \mathrm{~mol} \mathrm{CaCl}_{2}} \\
& =2.55 \mathrm{~g} \mathrm{CaCl}_{2}
\end{aligned}
$$

6. (6 points) 26.5 ml of $0.643 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is diluted to 150.0 ml . What is the molarity of the resulting solution?

$$
M_{1} V_{1}=M_{2} V_{2} \quad \rightarrow \quad M_{2}=M_{1}\left(\frac{V_{1}}{V_{2}}\right)=0.643 M\left(\frac{26.5 m L}{150.0 m L}\right)=0.114 M H_{2} C_{2} O_{4}
$$

7. (8 points) A 14.7% solution of potassium phosphate $\left(\mathrm{K}_{3} \mathrm{PO}_{4}\right)$ has a density of $1.39 \mathrm{~g} / \mathrm{mL}$. Calculate the molarity of the solution.

$$
\begin{gathered}
?\left[\mathrm{~K}_{3} \mathrm{PO}_{4}\right]=\frac{\mathrm{mol} \mathrm{~K}_{3} \mathrm{PO}_{4}}{L \text { soln }}=\frac{1.39 \mathrm{~g} \mathrm{soln}}{1 \mathrm{~mL} \mathrm{soln}} \times \frac{14.7 \mathrm{~g} \mathrm{~K} \mathrm{KO}_{3}}{100 \mathrm{~g} \mathrm{soln}} \times \frac{1 \mathrm{~mol} \mathrm{~K}_{3} \mathrm{PO}_{4}}{212.3 \mathrm{~g} \mathrm{~K} \mathrm{~K}_{3} \mathrm{PO}_{4}} \times \frac{1000 \mathrm{~mL} \mathrm{soln}}{1 \mathrm{~L} \operatorname{soln}} \\
=0.962 \mathrm{M} \mathrm{~K}_{3} \mathrm{PO}_{4}
\end{gathered}
$$

8. (6 points) A solution has an $\mathrm{H}_{3} \mathrm{O}^{+}$concentration of $8.53 \times 10^{-7} \mathrm{M}$.
a. Determine the pH of the solution.

$$
p H=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(8.53 \times 10^{-7}\right)=6.069
$$

b. Determine the pOH of the solution.

$$
\mathrm{pOH}=14-6.069=7.931
$$

9. (3 points) A solution has a pH of 5.724. Calculate the hydronium ion concentration in the solution.

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-p H}=10^{-5.724}=1.89 \times 10^{-6} \mathrm{M}
$$

10. (8 points) A 25.00 ml sample of vinegar was titrated with 43.46 ml of 0.3155 M NaOH . Calculate the molarity of acetic acid in the vinegar sample.
a. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{NaOH} \longrightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$

$$
\begin{gathered}
\mathrm{mol} \mathrm{NaOH}=43.46 \mathrm{~mL} \times \frac{0.3155 \mathrm{~mol} \mathrm{NaOH}}{1000 \mathrm{~mL}}=0.01371 \mathrm{~mol} \mathrm{NaOH} \\
\mathrm{~mol} \mathrm{HAc}=\mathrm{mol} \mathrm{NaOH}=0.01371 \mathrm{~mol} \mathrm{HAc} \\
\text { M HAc }=\frac{\mathrm{mol} \mathrm{HAc}}{L \text { soln}}=\frac{0.01371 \mathrm{~mol} \mathrm{HAc}}{0.02500 \mathrm{Lsoln}}=0.5485 \mathrm{M} \mathrm{HAc}
\end{gathered}
$$

11. (3 points) Give the IUPAC name of

3,5-Dimethyl octane (best)
Or 2-ethyl-4-methyl heptanes
12. (3 points) Draw a condensed structural formula for 3-ethyl heptane.

13. (3 points) Explain how a saturated fat differs from an unsaturated fat in terms of its chemical structure.

A saturated fat has only single bonds and an unsaturated fat contains double bonds.

